Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

An Examination of Driver Eye Glance Behavior, Navigational Errors, and Subjective Assessments While Using In-Vehicle Navigational Systems With and Without Landmark Enhancements

2017-03-28
2017-01-1375
This study investigated the effects of three navigation system human-machine interfaces (HMIs) on driver eye-glance behavior, navigational errors, and subjective assessments. Thirty-six drivers drove an unfamiliar 3-segment route in downtown Detroit. HMIs were 2D or 3D (level-of-detail) electronic map display + standard voice prompts, or 3D map-display augmented by photorealistic images + landmark-enhanced voice prompts. Participants drove the same three route segments in order but were assigned a different HMI condition/segment in a 3-period/3-treatment crossover experimental design. Results indicate that drivers’ visual attention using the advanced navigation systems HMIs were within US Department of Transportation recommended visual distraction limits. More turns missed in the first route segment, regardless of HMI, were attributable to greater route complexity and a late-onset voice prompt. Participant’s ratings of HMIs were influenced by the context in which that HMI was used.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Technical Paper

Energy Method for Torque Control of a Synchronous Traction Motor

2018-04-03
2018-01-0766
The problem of increasing the accuracy of determining the torque and the load angle of the permanent magnet synchronous motor of an electric traction drive to the predicted level (2.5...3)% of the full-scale error is solved by an indirect method. We considered the algorithms for calculating the generalized current and voltage of the electric motor, the total power, the instantaneous values of the power factor, and the sine of the phase angle between the first harmonics of voltages and currents. We determined the requirements for the accuracy of determining these values at the level of 1% of the full-scale error. We considered the algorithms for determining the total instantaneous power losses by the indirect method at the predicted level (15...20)% of the full-scale error with the efficiency of the motor (90...95)%.
Technical Paper

Formability Analysis of Thermoplastic Lightweight Fiber-Metal Laminates

2006-04-03
2006-01-0118
This study investigates numerically and experimentally the formability of two Fiber-Metal Laminate systems based on a thermoplastic self-reinforced polypropylene and a glass fiber polypropylene composite materials. These hybrid systems consist of layered arrangements of aluminum 2024-T3 sheets and thermoplastic-based composite materials. Flat panels were manufactured using a fast one step cold press manufacturing procedure. Punch-stretch forming tests and numerical simulations were performed in order to evaluate the formability of the hybrid systems. Experimental and simulation results revealed that the self reinforced thermoplastic composite-based Fiber-Metal Laminate exhibit excellent forming properties similar to that of the monolithic aluminum alloy of comparable thickness.
Technical Paper

Influence of Suspension Properties on Vehicle Roll Stability

2006-02-14
2006-01-1950
Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

Development of Innovative Design Concepts for Automotive Center Consoles

2006-04-03
2006-01-1474
The objective of the paper is to present a unique design approach and its outputs: the design concepts for automotive center consoles for a near term SUV that can be produced in 2-3 years, and the second for, a more futuristic SUV, that could be produced in 10 or more years. In the first phase of this two phase project, we benchmarked center consoles from a number of existing and concept vehicles, analyzed available data (e.g. J.D. Power customer feedback surveys), and conducted studies (e.g. survey of items stored in the vehicles, item location preferences in the console area) to understand customer/user needs in designing the center consoles. In the second phase, we provided the information generated in the first phase to four groups of student teams who competed to create winning designs of the center consoles.
Technical Paper

CFD Investigation of the Scavenging Process in a Two-Stroke Engine

1994-10-01
941929
Computational fluid dynamics simulations of the gas exchange process in a crankcase-scavenged, two-stroke engine were used to study the scavenging characteristics of the engine over the whole operating range and to investigate the effects of various design changes. The simulations used time-dependent velocity and pressure boundary conditions in the transfer and exhaust ports, respectively, which were obtained from a one-dimensional gas exchange code. The bulk flow characteristics, scavenging and trapping efficiencies, computed from these simulations compared well with experimental data. Investigation of the highest load and speed case showed that moderate port angle variations only weakly influenced the scavenging efficiency and velocity field. On the other hand, modifying the exhaust pressure to simulate single cylinder operation had a more significant effect on the scavenging and showed a possible way to control the gas exchange process.
Technical Paper

An Elastoplastic Damage Coupled Analysis for Crashworthiness of Aluminum Materials

1996-02-01
960169
This paper presents a comprehensive damage model capable of predicting crash behavior of aluminum structures under varying applied loading conditions. The damage model has been implemented in a general purpose explicit nonlinear finite element code and crash analysis has been carried out for aluminum tubes. The response obtained from the finite element analysis shows a close agreement with the experimental data. The finite element program containing the proposed generalized damage model can be used to analyze aluminum structures subjected to complex service loading conditions and identify associated failure modes to assess crashworthiness.
Technical Paper

A Fitting Algorithm for Determination of Minimum Zone Form Tolerances

1996-05-01
961642
In this paper, a new algorithm, named Nonlinear Optimization Method (NOM) has been mathematically and computationally developed for several geometric elements. The initial condition of the NOM is obtained by LSM, then the minimum zone is optimized in accordance with tolerancing principles in ANSI Y14.5.1M. The results are verified to be the Minimum Zone Evaluation (MZE) for the inspected geometric features. The algorithm, together with its computational realization programs, are proved to be considerably reliable and robust for practical applications.
Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Technical Paper

Parametric Approach for Development of an Automotive Bucket Seat Frame

2006-04-03
2006-01-0366
This paper presents a design and development approach for automotive bucket seat frame using a parametric modeling and a finite element analysis methodology. This approach is expected to help build a lightweight seat structure quickly and efficiently. This approach is general, and it can be applied in designing and developing any mechanical structural component. The design process involves, first parametric modeling of the front bucket seat frame using Pro E. This CAD model was then optimized using optimization software called Optistruct, for two cases of load case and boundary condition. The optimized design was then tested for FMVSS seat requirements using LS-DYNA. The dynamic nature of the design approach helps in changing design parameters during different stages of the design process, until the seat structure satisfies the design criteria and the strength requirements. The construction and testing of this design and the design model are still under progress.
Technical Paper

Incorporating Hard Disks in Vehicles- Usages and Challenges

2006-04-03
2006-01-0814
With recent advances in microprocessors and data storage technologies, vehicle users can now bring or access large amounts of data in vehicles for purposes such as communication (e.g. e-mail, phone books), entertainment (e.g. music and video files), browsing and searching for information (e.g. on-board computers and internet). The challenge for the vehicle designer is how to design data displays and retrieval methods to allow data search and manipulation tasks by managing driver workload at safe acceptable levels. This paper presents a data retrieval menu system developed to assess levels of screens (depth of menu) that may be needed to select required information when a vehicle is equipped with the capability to access audio files, cell phone, PDA, e-mail and “On-star” type functions.
Technical Paper

Towards Development of a Methodology to Measure Perception of Quality of Interior Materials

2005-04-11
2005-01-0973
The automotive interior suppliers are challenged to develop materials, that not only perform functionally, but also provide the right combination sensory experience (e.g. visual appeal, tactile feeling) and brand differentiation at very competitive costs. Therefore, the objective of this research presented in this paper is to develop a methodology that can be used to measure customer perception of interior materials and to come up with a unique system for assessing value of different interior materials. The overall methodology involves the application of a number of psychophysical measurement methods (e.g. Semantic Differential Scaling) and statistical methods to assess: 1) overall customer perceived quality of materials, 2) elements (or attributes) of perception, and 3) value of materials from OEM's viewpoint in terms of the measurement of perception of quality divided by a measure of cost.
Technical Paper

Behavior of Adhesive Lap Joints in Aluminum Tubes for Crashworthy Structures

2022-03-29
2022-01-0873
Tubular sections are found in many automotive structural components such as front rails, cross beams, and sub-frames. They are also used in other vehicular structures, such as buses and rails. In many of these components, smaller tubular sections may be joined together using an adhesive to build the required structure. For crash safety applications, it is important that the joined tube sections be able to provide high energy absorption capability and withstand the impact load before the adhesive bond failure occurs. In this study, single lap tubular joints between two aluminum tubes are investigated for their crush performance at both quasi-static and high impact speeds using finite element analysis. A crash optimized adhesive Betamate 1496 is considered. The joint parameters, such as adhesive overlap length, tube diameters and tube lengths, are varied to determine their effects on energy absorption, peak and mean loads, and tube deformation mode.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Analysis of Cumulative Damage in a Bumper Due to Multiple Low Speed Impacts

2000-03-06
2000-01-0631
The paper presents a method of analysis based on the theory of damage mechanics to quantify the degree of damage in an engineering structure under load. The method is incorporated into a Ford in-house finite element program called FCRASH that is applied to analyze the cumulative damage in a bumper under multiple low speed impacts. The numerical results calculated at the peak value of the contact force are compared with the test results. The FEA results are used to identify the locations of the hotspot in the bumper system and the predicted location where a potential crack would initiate. The microscopic observations showed damage in the area predicted with the finite element program after the specified number of impacts.
X